Contenuto prova di ammissione
Contenuto:
Successioni e serie di funzioni Convergenza puntuale e uniforme per le successioni di funzioni reali di variabile reale. Limite uniforme di una successione di funzioni continue. Teorema di inversione dell'ordine dei limiti. Convergenza puntuale, uniforme, totale di una serie di funzioni reali di variabile reale. Serie di potenze, raggio di convergenza. Serie di Taylor. Funzioni analitiche. Calcolo differenziale per funzioni reali di n variabili reali Elementi di topologia nello spazio euclideo. Insiemi aperti, chiusi, compatti, connessi. Definizione di limite di una funzione in un punto e in un insieme. Teoremi algebrici sui limiti. Definizione di funzioni continua in un punto e in un insieme. Teorema sulla continuità delle funzioni composte. Teorema di Weierstrass, teorema di connessione. Derivate parziali e direzionali. Derivate di ordine superiore, matrice Hessiana, teorema di Schwartz. Funzione differenziabile in un punto. Derivabilità delle funzioni composte. Massimi e minimi liberi: condizioni necessarie del primo e del secondo ordine. Condizioni sufficienti. Teorema delle funzioni implicite. Significato geometrico del gradiente. Massimi e minimi vincolati. Teorema dei moltiplicatori di Lagrange. Calcolo integrale per funzioni di n variabili reali. Teoria della misura di Lebesgue. La σ-algebra degli insiemi misurabili secondo Lebesgue. Funzioni misurabili e funzioni integrabili (o sommabili). Definizione di integrale di una funzione in un insieme misurabile. Proprietà dell'integrale. Teorema di Fubini-Tonelli (formula di riduzione) e teorema di cambiamento di variabili. Equazioni differenziali ordinarie a variabili separabili e lineari.
Testi di riferimento:
P. Marcellini e C. Sbordone, Esercitazioni di Matematica, II vol. Parti prima e seconda. --: Liguori, --.
N. FUSCO, P. MARCELLINI, C. SBORDONE, Analisi due. --: Liguori, --. Cerca nel catalogo
Michiel Bertsch, Roberta Dal Passo, Lorenzo Giacomelli, Analisi Matematica. --: McGraw Hill, --. Cerca nel catalogo