Spatial Statistics

PhD School in Statistical Sciences, University of Padua

Instructor Carlo Gaetan, DAIS - Ca' Foscari University of Venice

Course Description

This course is designed to introduce the students to statistical models for spatial data. The course will cover methods for two major topics of spatial statistics : (i) point-referenced data, (ii) areal/lattice data. Students will also be introduced to the computational aspects of spatial statistics, illustrating the main packages in R for the analysis of spatial data. The real data examples mainly come from environmental sciences.

Program

- 1. Introduction to spatial statistics:
 - (a) point level data
 - (b) network data
 - (c) spatial point processes
- 2. Modelling and estimation for point level data:
 - (a) parametric models for the spatial correlations
 - (b) variogram
 - (c) maximum likelihood estimation, restricted maximum likelihood
 - (d) estimation methods for large dataset
- 3. Prediction and interpolation (Kriging):
 - (a) Lagrange multiplier approach
 - (b) Conditional inference approach
- 4. Spatio-temporal modeling:
 - (a) point-level modeling with continuous time
 - (b) nonseparable models
 - (c) dynamic space-time models
- 5. Second order spatial models for network data:
 - (a) spatial autocorrelation
 - (b) spatial autoregressive models
- 6. Gibbs-Markov random fields on networks:
 - (a) compatibility of conditional distributions
 - (b) Gibbs random fields
 - (c) Markov random fields and Gibbs random fields
 - (d) Besag's auto-models
- 7. Simulation and estimation of a Markov random field on a network:
 - (a) MCMC methods: Gibbs and Metropolis-Hastings algorithm

- (b) maximum likelihood
- (c) pseudo-likelihood
- 8. Hierarchical spatial models and Bayesian statistics:
 - (a) spatial regression and Bayesian kriging
 - (b) hierarchical spatial generalized linear models
 - (c) hierarchical spatial model for large data sets.

Recommended texts

- Banerjee, S., Carlin, B.P. and Gelfand. A.E (2014) *Hierarchical Modeling and Analysis for Spatial Data*, CRC Press, New York (second edition)
- Gaetan, C. and Guyon, X. (2010) Spatial Statistics and Modeling, Springer, New York.
- Gelfand, A.E., Diggle, P., Guttorp, P. and Fuentes, M. (2010) Handbook of Spatial Statistics, CRC Press, New York

Grading

There will be three homeworks, a final exam, and a project. The homeworks will count 20%. The final exam and the project will account for the bulk of the mark (40% and 40%, respectively).

Final exam

The written exam (two hours) will present theoretical questions. It is a closed-book, closed-notes exam. Questions demand that students approach the solution with conceptual understanding of the problem.

Dates

Course

March: 1,8,15,22,29

April: 5,12,19,26

May: 3,10

Exam

June: to be fixed